24 research outputs found

    Visual Geo-localization with Self-supervised Representation Learning

    Full text link
    Visual Geo-localization (VG) has emerged as a significant research area, aiming to identify geolocation based on visual features. Most VG approaches use learnable feature extractors for representation learning. Recently, Self-Supervised Learning (SSL) methods have also demonstrated comparable performance to supervised methods by using numerous unlabeled images for representation learning. In this work, we present a novel unified VG-SSL framework with the goal to enhance performance and training efficiency on a large VG dataset by SSL methods. Our work incorporates multiple SSL methods tailored for VG: SimCLR, MoCov2, BYOL, SimSiam, Barlow Twins, and VICReg. We systematically analyze the performance of different training strategies and study the optimal parameter settings for the adaptation of SSL methods for the VG task. The results demonstrate that our method, without the significant computation and memory usage associated with Hard Negative Mining (HNM), can match or even surpass the VG performance of the baseline that employs HNM. The code is available at https://github.com/arplaboratory/VG_SSL.Comment: 15 pages (including appendix, references), 2 figures, 9 tables (5 tables in appendix

    Long-range UAV Thermal Geo-localization with Satellite Imagery

    Full text link
    Onboard sensors, such as cameras and thermal sensors, have emerged as effective alternatives to Global Positioning System (GPS) for geo-localization in Unmanned Aerial Vehicle (UAV) navigation. Since GPS can suffer from signal loss and spoofing problems, researchers have explored camera-based techniques such as Visual Geo-localization (VG) using satellite RGB imagery. Additionally, thermal geo-localization (TG) has become crucial for long-range UAV flights in low-illumination environments. This paper proposes a novel thermal geo-localization framework using satellite RGB imagery, which includes multiple domain adaptation methods to address the limited availability of paired thermal and satellite images. The experimental results demonstrate the effectiveness of the proposed approach in achieving reliable thermal geo-localization performance, even in thermal images with indistinct self-similar features. We evaluate our approach on real data collected onboard a UAV. We also release the code and \textit{Boson-nighttime}, a dataset of paired satellite-thermal and unpaired satellite images for thermal geo-localization with satellite imagery. To the best of our knowledge, this work is the first to propose a thermal geo-localization method using satellite RGB imagery in long-range flights.Comment: 8 pages, 6 figures, IROS 202

    Unifying Foundation Models with Quadrotor Control for Visual Tracking Beyond Object Categories

    Full text link
    Visual control enables quadrotors to adaptively navigate using real-time sensory data, bridging perception with action. Yet, challenges persist, including generalization across scenarios, maintaining reliability, and ensuring real-time responsiveness. This paper introduces a perception framework grounded in foundation models for universal object detection and tracking, moving beyond specific training categories. Integral to our approach is a multi-layered tracker integrated with the foundation detector, ensuring continuous target visibility, even when faced with motion blur, abrupt light shifts, and occlusions. Complementing this, we introduce a model-free controller tailored for resilient quadrotor visual tracking. Our system operates efficiently on limited hardware, relying solely on an onboard camera and an inertial measurement unit. Through extensive validation in diverse challenging indoor and outdoor environments, we demonstrate our system's effectiveness and adaptability. In conclusion, our research represents a step forward in quadrotor visual tracking, moving from task-specific methods to more versatile and adaptable operations

    Combined modulation to incident laser by subsurface crack and contaminant on fused silica

    No full text
    Subsurface defects and contaminations will be generated during the grinding and polishing processes of optical components. Combined modulation is one of the important factors for the laser-induced damages of fused silica. In this paper, by using 2D finite-difference time-domain method, the light intensity distribution modulated by both radial crack and contaminant is studied on front/rear surface, respectively. The results show that the light intensity distribution is significantly affected by the aspect ratio of radial crack and the relative position between radial crack and contaminant. The simulations of the combined modulation on rear surface show that larger LIEFs are generated at certain relative positions compared with those in the single modulation of radial crack or contaminant. Meanwhile, with the increase of distance, the LIEFs are wave-like up and down fluctuations, and gradually tend to stable values. When there is no total internal reflection, the LIEF in contaminant on the crack wall rises significantly with increase of distance, the maximum LIEF occurs when the contaminant is near the intersecting line between radial crack and rear surface. The simulation of the combined modulation on front surface show that the variation of LIEFs in global domain are not very prominent.National Natural Science Foundation of China [51175416, 51675420]; 111 Program [B12016]; National Key Research & Development (R&D) Program of China [2016YFB0501604-02]; International Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologiesThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Effect of micro-crack and reaction product on laser damage performance of optical glass during chemical etching

    No full text
    Chemical etching is usually utilized to improve the laser damage performance of optical glass by mitigating micro-cracks, while it inevitably produces some reaction products (RPs). In this paper, two K9 glasses with good quality and two K9 glasses with micro-cracks are etched, statically or dynamically (high-frequency ultrasonic agitation). The morphologies of cracks and RPs are characterized, and the laser-induced damage thresholds (LIDTs) are measured. The results show that with the increase of etching time, the LIDT increases slightly at first and then decreases gradually for the glass with RPs, and the LIDT increases at first and then stabilizes for the glass without RPs. Using finite-difference time-domain method, the light intensities around crack, RP and their combination are simulated, respectively. The results indicate that the light intensity enhancement factor (LIEF) increases at first and then decreases with the decrease of crack aspect ratio, and the LIEF increases with RP radius. The LIEF for the combination is generally larger than that for one crack or one RP, which greatly depends on the relative distance between the crack and the RP. Experimental and simulated results complement each other, revealing the influence mechanism of crack and RP on the LIDT. This work would contribute to improving the LIDT of optical glass by chemical etching.National Natural Science Foundation of China [51175416, 51675420]; National Key Research & Development (R&D) Program of China [2016YFB0501604-02]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Diagnosis and Treatment of Adrenal Medullary Hyperplasia: Experience from 12 Cases

    No full text
    Objective. To dissect the characteristics of adrenal medullary hyperplasia (AMH) and share our experience of diagnosis and treatment of AMH. Methods. From 1999 to 2013, 12 cases of AMH have been pathologically diagnosed after operation in our hospital. The clinical characteristics, process of diagnosis, treatment, and prognosis during follow-up of all patients are summarized retrospectively. Results. Four cases were trended to be AMH and 6 cases were trended to be pheochromocytoma before operation; moreover, the other two patients were diagnosed accidentally. All patients, except for the patient with mucinous tubular and spindle cell carcinoma of left kidney by open surgery, experienced a smooth laparoscopic adrenalectomy, including 2 with radical nephrectomy, 10 of which experienced unilateral adrenalectomy, 1 was bilaterally partial adrenalectomy, and the remaining one was unilaterally complete removal and then 2/3 partially contralateral excision. After a medium follow-up of 6.5 years, it demonstrated a satisfactory outcome of 8 cured patients and 4 symptomatic improved patients. Conclusions. AMH presents a mimicking morphology and clinical manifestation with pheochromocytoma. Surgery could be the only effective choice for the treatment of AMH and showed a preferable prognosis after a quite long follow-up

    ITE and TCDD differentially regulate the vascular remodeling of rat placenta via the activation of AhR.

    Get PDF
    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in intrauterine fetal death

    Facile synthesis and characterization of multifunctional cobalt-based nanocomposites for targeted chemo-photothermal synergistic cancer therapy

    No full text
    In this study, we develop polyethylene glycol (PEG) modified nanocomposites, which structurally constitute graphene oxide (GO) and cobalt nanoparticles (CoNPs), called as the CoNPs-GO-PEG nanocomposites. These CoNPs-GO-PEG nanocomposites show better outcomes and less side effects when eliminating tumor cells. After a series of comprehensive characterizations, the CoNPs-GO-PEG nanocomposites are proved to possess pleasing targeting ability and unique drug release behavior, indicating that the concentration of the drug delivered by CoNPs-GO-PEG in the tumor site is much higher than that in the normal tissue, and concerning the favorable biocompatibility of CoNPs-GO-PEG nanocomposites, less harm is caused to normal tissue compared to traditional chemotherapy. Furthermore, because of the satisfactory photothermal effect and favorable drug release behavior of the material, the CoNPs-GO-PEG are able to eradicate most of the tumor cells (99%) through synergistic chemo-photothermal therapy in vitro. So far, our study has demonstrated an inspiring potential for the CoNPs-GO-PEG nanocomposites to act as a favorable targeting multifunctional agent in cancer therapy
    corecore